5,272 research outputs found

    Hydrodynamic lift on bound vesicles

    Full text link
    Bound vesicles subject to lateral forces such as arising from shear flow are investigated theoretically by combining a lubrication analysis of the bound part with a scaling approach to the global motion. A minor inclination of the bound part leads to significant lift due to the additive effects of lateral and tank-treading motions. With increasing shear rate, the vesicle unbinds from the substrate at a critical value. Estimates are in agreement with recent experimental data.Comment: 9 pages, one figur

    Bilayer Membrane in Confined Geometry: Interlayer Slide and Steric Repulsion

    Full text link
    We derived free energy functional of a bilayer lipid membrane from the first principles of elasticity theory. The model explicitly includes position-dependent mutual slide of monolayers and bending deformation. Our free energy functional of liquid-crystalline membrane allows for incompressibility of the membrane and vanishing of the in-plane shear modulus and obeys reflectional and rotational symmetries of the flat bilayer. Interlayer slide at the mid-plane of the membrane results in local difference of surface densities of the monolayers. The slide amplitude directly enters free energy via the strain tensor. For small bending deformations the ratio between bending modulus and area compression coefficient, Kb/KA, is proportional to the square of monolayer thickness, h. Using the functional we performed self-consistent calculation of steric potential acting on bilayer between parallel confining walls separated by distance 2d. We found that temperature-dependent curvature at the minimum of confining potential is enhanced four times for a bilayer with slide as compared with a unit bilayer. We also calculate viscous modes of bilayer membrane between confining walls. Pure bending of the membrane is investigated, which is decoupled from area dilation at small amplitudes. Three sources of viscous dissipation are considered: water and membrane viscosities and interlayer drag. Dispersion has two branches. Confinement between the walls modifies the bending mode with respect to membrane in bulk solution. Simultaneously, inter-layer slipping mode, damped by viscous drag, remains unchanged by confinement.Comment: 23 pages,3 figures, pd

    Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes from mammalian cells

    Get PDF
    Specific antibodies against rap1A and rap1B small GTP-binding proteins were generated by immunization of rabbits with peptides derived from the C-terminus of the processed proteins. Immunoblot analysis of membranes from several mammalian cell lines and human thrombocytes with affinity-purified antibodies against rap1A or rap1B demonstrated the presence of multiple immunoreactive proteins in the 22-23 kDa range, although at strongly varying levels. Whereas both proteins were present in substantial amounts in membranes from myelocytic HL-60, K-562 and HEL cells, they were hardly detectable in membranes from lymphoma U-937 and S49.1 cyc- cells. Membranes from human thrombocytes and 3T3-Swiss Albino fibroblasts showed strong rap1B immunoreactivity, whereas rap1A protein was present in much lower amounts. In the cytosol of HL-60 cells, only small amounts of rap1A and rap1B proteins were detected, unless the cells were treated with lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase, suggesting that both proteins are isoprenylated. By comparison with recombinant proteins, the ratio of rap1A/ras proteins in membranes from HL-60 cells was estimated to be about 4:1. An antiserum directed against the C-terminus of rap2 reacted strongly with recombinant rap2, but not with membranes from tested mammalian cells. In conclusion, rap1A and rap1B proteins are distributed differentially among membranes from various mammalian cell types and are isoprenylated in HL-60 cells

    Can the Tajmar effect be explained using a modification of inertia?

    Full text link
    The Tajmar effect is an unexplained acceleration observed by accelerometers and laser gyroscopes close to rotating supercooled rings. The observed ratio between the gyroscope and ring accelerations was 3+/-1.2x10^-8. Here, a new model for inertia which has been tested quite successfully on the Pioneer and flyby anomalies is applied to this problem. The model assumes that the inertia of the gyroscope is caused by Unruh radiation that appears as the ring and the fixed stars accelerate relative to it, and that this radiation is subject to a Hubble-scale Casimir effect. The model predicts that the sudden acceleration of the nearby ring causes a slight increase in the inertial mass of the gyroscope, and, to conserve momentum in the reference frame of the spinning Earth, the gyroscope rotates clockwise with an acceleration ratio of 1.8+/-0.25x10^-8 in agreement with the observed ratio. However, this model does not explain the parity violation seen in some of the gyroscope data. To test these ideas the Tajmar experiment (setup B) could be exactly reproduced in the southern hemisphere, since the model predicts that the anomalous acceleration should then be anticlockwise.Comment: 9 pages, 1 figure. Accepted by EPL on the 4th December, 200

    Efficiency at maximum power: An analytically solvable model for stochastic heat engines

    Full text link
    We study a class of cyclic Brownian heat engines in the framework of finite-time thermodynamics. For infinitely long cycle times, the engine works at the Carnot efficiency limit producing, however, zero power. For the efficiency at maximum power, we find a universal expression, different from the endoreversible Curzon-Ahlborn efficiency. Our results are illustrated with a simple one-dimensional engine working in and with a time-dependent harmonic potential.Comment: 6 pages, 3 figure

    Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)

    Get PDF
    Coastal zones are important source regions for a variety of trace gases, including halocarbons and sulfur-bearing species. While salt marshes, macroalgae and phyto-plankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for highly time-resolved measurements. The fluxes of CO2, methane (CH4) and a range of volatile organic compounds (VOCs) showed a complex dynamic mediated by tide and light. In contrast to most previous studies, our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occurred with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.German Federal Ministry of Education and Research (BMBF) [03F0611E, 03F0662E]; EU FP7 ASSEMBLE research infrastructure initiative

    Influence of shear flow on vesicles near a wall: a numerical study

    Full text link
    We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall. This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a wall which acts only as a geometrical constraint. We find that the lift velocity is linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall. Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of the viscous lift force which seems to agree with recent experiments of Lorz et al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transition which occurs at an adhesion strength linearly proportional to the shear rate.Comment: 17 pages (incl. 10 figures), RevTeX (figures in PostScript

    Periodically driven stochastic un- and refolding transitions of biopolymers

    Full text link
    Mechanical single molecule experiments probe the energy profile of biomolecules. We show that in the case of a profile with two minima (like folded/unfolded) periodic driving leads to a stochastic resonance-like phenomenon. We demonstrate that the analysis of such data can be used to extract four basic parameters of such a transition and discuss the statistical requirements of the data acquisition. As advantages of the proposed scheme, a polymeric linker is explicitly included and thermal fluctuations within each well need not to be resolved.Comment: 7 pages, 5 figures, submitted to EP

    Elastic deformation of a fluid membrane upon colloid binding

    Full text link
    When a colloidal particle adheres to a fluid membrane, it induces elastic deformations in the membrane which oppose its own binding. The structural and energetic aspects of this balance are theoretically studied within the framework of a Helfrich Hamiltonian. Based on the full nonlinear shape equations for the membrane profile, a line of continuous binding transitions and a second line of discontinuous envelopment transitions are found, which meet at an unusual triple point. The regime of low tension is studied analytically using a small gradient expansion, while in the limit of large tension scaling arguments are derived which quantify the asymptotic behavior of phase boundary, degree of wrapping, and energy barrier. The maturation of animal viruses by budding is discussed as a biological example of such colloid-membrane interaction events.Comment: 14 pages, 9 figures, REVTeX style, follow-up on cond-mat/021242

    Influence of flood risk characteristics on flood insurance demand: A comparison between Germany and the Netherlands

    Get PDF
    The existence of sufficient demand for insurance coverage against infrequent losses is important for the adequate function of insurance markets for natural disaster risks. This study investigates how characteristics of flood risk influence household flood insurance demand based on household surveys undertaken in Germany and the Netherlands. Our analyses confirm the hypothesis that willingness to pay (WTP) for insurance against medium-probability medium-impact flood risk in Germany is higher than WTP for insurance against low-probability high-impact flood risk in the Netherlands. These differences in WTP can be related to differences in flood experience, individual risk perceptions, and the charity hazard. In both countries there is a need to stimulate flood insurance demand if a relevant role of private insurance in flood loss compensation is regarded as desirable, for example, by making flood insurance compulsory or by designing information campaigns
    corecore